On Common Fixed Point for Four Maps in 2-metric Space

ASHA
SANJAY KUMAR TIWARI
P.G.Department of Mathematics
Magadh University, Bodh Gaya (Bihar)
India

Abstract

: We have established a fixed point theorem in 2-metric space for four maps. Our result generalizes the result of Lal and Singh.

Introduction:

There have been a number of generalization of a metric space. One such generalization of 2-metric space was initiated by Gahler [1]. Geometrically in plane, 2metric function abstracts the properties of the area function for Euclidean triangle just as a metric function abstracts the length function for Euclidean segment.

After the introduction of concept of 2-metric space, many authors established an analogue of Banach's Contraction principle in 2-metric space. Iseki [2] for the first time developed fixed point theorem in 2-metric space. Since then a quite significant number of authors [3], [4], [5], [6], etc. have established fixed point theorem in 2- metric space.

Lal and Singh[3] proved,
Theorem (1.1) Let S and T are two self maps of a complete 2 metric space (X, d) such that:
$d(S x, T y, a) \square a_{1} d(x, y, a)+a_{2} d(S x, x, a)+a_{3} d(T y, y, a)+a_{4} d(S x, y, a)+a_{5} d(T y, x, a)$
for all $\mathrm{x}, \mathrm{y}, \mathrm{a} \square \mathrm{X}$, where $\mathrm{a}_{\mathrm{i}}(\mathrm{i}=1,2,3,4,5)$ are positive integers such that $\left(1-\mathrm{a}_{3}-\mathrm{a}_{4}\right)>0$ and $\left(1-\mathrm{a}_{2}-\mathrm{a}_{5}\right)>0$.
Then S and T have a unique fixed point theorem.
Preliminaries: Now we give some basic definitions and well known results that are needed in the sequel.

Definition (2.1) [1] Let X be a non-empty set and d: $X x X x X \rightarrow R_{+}$. If for all x, y, z, and u in X . We have

$$
\begin{array}{ll}
\left(d_{1}\right) & d(x, y, z)=0 \text { if at least two of } x, y, z \text { are equal. } \\
\left(d_{2}\right) & \text { for all } x \neq y, \text { there exists a point } z \text { in } x \text { such that } d(x, y, z) \neq 0 . \\
\left(d_{3}\right) & d(x, y, z)=d(x, z, y)=d(y, z, x)=\ldots \ldots \text { and so on } \\
\left(d_{4}\right) & d(x, y, z) \leq d(x, y, u)+d(x, u, z)+d(u, y, z)
\end{array}
$$

Then d is called a 2-metric on X and the pair (X, d) is called 2-metric space.
Definition (2.2): A sequence $\left\{\mathrm{X}_{\mathrm{n}}\right\}_{\mathrm{n} \in \mathrm{N}}$ in a 2 -metric space (X, d) is said to be a cauchy sequence if $\lim _{m \rightarrow \infty}^{n \rightarrow \infty} d\left(x_{n}, x_{m}, a\right)=0$ for all $\mathrm{a} \in \mathrm{X}$.

Definition (2.3): A sequence $\left\{\mathrm{x}_{\mathrm{n}}\right\}_{\mathrm{n} \in \mathrm{N}}$ in a 2-metric space (X, d) is said to be a convergent ${ }^{\mathrm{if}} \lim _{n \rightarrow \infty} d\left(x_{n}, x, a\right)=0$ for all $\mathrm{a} \in \mathrm{X}$. The point x is called the limit of the sequence.

Definition (2.4) : A 2-metric space (X, d) is said to be complete if every cauchy sequence in X is convergent.

Main Result:

Theorem (3.1) : Let A, B, S and T are four self maps of a complete 2-metric space (X, d) such that
(i) $\mathrm{A}(\mathrm{X}) \subseteq \mathrm{T}(\mathrm{X}): \mathrm{B}(\mathrm{X}) \subseteq \mathrm{S}(\mathrm{X})$
(ii) pairs (A, S) and (B, T) are commutating.
(iii) $d(A x, B y, a) \leq a_{1} d(S x, T y, a)+a_{2} d(A x, S x, a)+a_{3} d(B y, T y, a)$

$$
+\mathrm{a}_{4} \mathrm{~d}(\mathrm{Sx}, \mathrm{By}, \mathrm{a})+\mathrm{a}_{5} \mathrm{~d}(\mathrm{Ax}, \mathrm{Ty}, \mathrm{a})
$$

for all $\mathrm{x}, \mathrm{y}, \mathrm{a} \in \mathrm{X}$, where $\mathrm{a}_{\mathrm{i}}(\mathrm{i}=1,2,3,4)$ are positive integers such that and $\left(1-\mathrm{a}_{3}-\mathrm{a}_{4}\right)>0$ and $\left(1-\mathrm{a}_{2}-\mathrm{a}_{5}\right)>0$
then
(iv) A and S have a coincidence point
(v) $\quad \mathrm{B}$ and T have a coincidence point Moreover if the pairs (A, S) and (B, T) are commutating then A,B,S and T have a unique common fixed point.

Proof :

Since (i) holds, we can define a sequence by choosing an arbitrary point x_{0} in X , such that

$$
x_{2 n}=A x_{2 n}=T x_{2 n+1}
$$

and $x_{2 n+1}=B x_{2 n+1}=S x_{2 n+2}$ for $n=0,1,2 \ldots$.
Now first we prove that $\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}+1}, \mathrm{x}_{2 \mathrm{n}+2}\right)=0$

$$
\begin{aligned}
\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}+1}, \mathrm{x}_{2 \mathrm{n}+2}\right) & =\mathrm{d}\left(\mathrm{Bx}_{2 \mathrm{n}+1} \cdot \mathrm{Ax}_{2 \mathrm{n}+2}, \mathrm{x}_{2 \mathrm{n}}\right) \\
& =\mathrm{d}\left(\mathrm{Ax}_{2 \mathrm{n}+2}, \mathrm{Bx}_{2 \mathrm{n}+1}, \mathrm{x}_{2 \mathrm{n}}\right) \\
& \leq \mathrm{a}_{1} \mathrm{~d}\left(\mathrm{Sx}_{2 \mathrm{n}+2}, \mathrm{Tx}_{2 \mathrm{n}+1}, \mathrm{x}_{2 \mathrm{n}}\right)+\mathrm{a}_{2} \mathrm{~d}\left(\mathrm{Ax}_{2 \mathrm{n}+2}, \mathrm{x}_{2 \mathrm{n}+2}, \mathrm{x}_{2 \mathrm{n}}\right)
\end{aligned}
$$

Asha, Sanjay Kumar Tiwari- On Common Fixed Point for Four Maps in 2-metric Space

$$
\begin{aligned}
& +\mathrm{a}_{3} \mathrm{~d}\left(\mathrm{Bx}_{2 \mathrm{n}+1}, \mathrm{Tx}_{2 \mathrm{n}+1}, \mathrm{x}_{2 \mathrm{n}}\right)+\mathrm{a}_{4} \mathrm{~d}\left(\mathrm{Sx}_{2 \mathrm{n}+2}, \mathrm{Bx}_{2 \mathrm{n}+2}, \mathrm{x}_{2 \mathrm{n}}\right)+ \\
& \mathrm{a}_{5} \mathrm{~d}\left(\mathrm{Ax} 2_{\mathrm{n}+2}, \mathrm{Tx}_{\mathrm{n}+1}, \mathrm{X}_{\mathrm{n}}\right) \\
& =\mathrm{a}_{1} \mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}+1}, \mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}}\right)+\mathrm{a}_{2} \mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}+2}, \mathrm{x}_{2 \mathrm{n}+1}, \mathrm{x}_{2 \mathrm{n}}\right) \\
& +\mathrm{a}_{3} \mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}+1}, \mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}}\right)+\mathrm{a}_{4} \mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}+1}, \mathrm{x}_{2 \mathrm{n}+1}, \mathrm{x}_{2 \mathrm{n}}\right)+\mathrm{a}_{5} \mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}+2},\right.
\end{aligned}
$$

$\left.x_{2 n}, x_{2 n}\right)$
i.e. $\left(1-\mathrm{a}_{2}\right) \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}+1}, \mathrm{x}_{2 \mathrm{n}+2}\right) \leq 0$. which is a centradiction.

Hence $\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}+1}, \mathrm{x}_{2 \mathrm{n}+2}\right)=0$
Now we shall prove that $\left\{x_{n}\right\}$ is cauchy sequence in X. For this we put $x=x_{2 n}, y=$ $\mathrm{x}_{2 \mathrm{n}+1}$ in (iii), we get
$\mathrm{d}\left(\mathrm{Ax}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}+1}, \mathrm{a}\right)=\mathrm{d}\left(\mathrm{Ax}_{2 \mathrm{n}}, \mathrm{Bx}_{2 \mathrm{n}+1}, \mathrm{a}\right)$
$\leq \mathrm{a}_{1} \mathrm{~d}\left(\mathrm{Sx}_{2 \mathrm{n}}, \mathrm{Tx}_{2 \mathrm{n}+1}, \mathrm{a}\right)+\mathrm{a}_{2} \mathrm{~d}\left(\mathrm{Ax}_{2 \mathrm{n}}, \mathrm{Sx}_{2 \mathrm{n}}, \mathrm{a}\right)+\mathrm{a}_{3} \mathrm{~d}\left(\mathrm{Bx}_{2 \mathrm{n}+1}, T \mathrm{Tx}_{2 \mathrm{n}+1}, \mathrm{a}\right)$
$+\mathrm{a}_{4} \mathrm{~d}\left(\mathrm{Sx}_{2 \mathrm{n}}, \mathrm{Bx}_{2 \mathrm{n}+1}, \mathrm{a}\right)+\mathrm{a}_{5} \mathrm{~d}\left(\mathrm{Ax}_{2 \mathrm{n}}, \mathrm{Tx}_{2 \mathrm{n}+1}, \mathrm{a}\right)$
$=\mathrm{a}_{1} \mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}}, \mathrm{a}\right)+\mathrm{a}_{2} \mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}-1}, \mathrm{a}\right)+\mathrm{a}_{3} \mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}+1}, \mathrm{x}_{2 \mathrm{n}}, \mathrm{a}\right)$
$+\mathrm{a}_{4} \mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}+1}, \mathrm{a}\right)+\mathrm{a}_{5} \mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}}, \mathrm{a}\right)$
$\leq\left(\mathrm{a}_{1}+\mathrm{a}_{2}\right) \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}}, \mathrm{a}\right)+\mathrm{a}_{3} \mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}+1}, \mathrm{x}_{2 \mathrm{n}}, \mathrm{a}\right)$
$+\mathrm{a}_{4}\left[\mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}+1}, \mathrm{x}_{2 \mathrm{n}}\right)+\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}}, \mathrm{a}\right)+\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}+1}, a\right)\right]+$
i.e. $d\left(x_{2 n}, x_{2 n+1}, a\right) \leq\left(a_{1}+a_{2}+a_{4}\right) d\left(x_{2 n-1}, x_{2 n}, a\right)+\left(a_{3}+a_{4}\right) d\left(x_{2 n}, x_{2 n+1}, a\right)$
or, $\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}+1}, \mathrm{a}\right) \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}}\right.$, a).
or $\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}+1}, \mathrm{a}\right) \leq \gamma \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}}\right.$, a) where
Again putting $\mathrm{x}=\mathrm{x}_{2 \mathrm{n}+2}, \mathrm{y}=\mathrm{x}_{2 \mathrm{n}+1}$ (iii) we get, $\mathrm{y}=\mathrm{x}_{2 \mathrm{n}+1}$,

$$
\begin{aligned}
& \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}+1}, \mathrm{x}_{2 \mathrm{n}+2}, \mathrm{a}\right)=\mathrm{d}\left(\mathrm{Bx}_{2 \mathrm{n}+1}, \mathrm{Ax}{ }_{2 \mathrm{n}+2}, \mathrm{a}\right) \\
& =d\left(A x_{2 n+2}, B x_{2 n+1}, a\right) \\
& \leq \mathrm{a}_{1} \mathrm{~d}\left(\mathrm{Sx}_{2 \mathrm{n}+2}, \mathrm{Tx}_{2 \mathrm{n}+1}, \mathrm{a}\right)+\mathrm{a}_{2} \mathrm{~d}\left(\mathrm{Ax}_{2 \mathrm{n}+2}, \mathrm{Sx}_{2 \mathrm{n}+2}, \mathrm{a}\right)+\mathrm{a}_{3} \mathrm{~d}\left(\mathrm{Bx}_{2 \mathrm{n}+1}, \mathrm{Tx}_{2 \mathrm{n}+1}, \mathrm{a}\right) \\
& +\mathrm{a}_{4} \mathrm{~d}\left(\mathrm{Sx}_{2 \mathrm{n}+2}, \mathrm{Bx}_{2 \mathrm{n}+1} \mathrm{a}\right)+\mathrm{a}_{5} \mathrm{~d}\left(\mathrm{Ax}_{2 \mathrm{n}+2}, \mathrm{Tx}_{2 \mathrm{n}+1}, \mathrm{a}\right) \\
& =a_{1}{ }^{d}\left(x_{2 n+1}, x_{2 n}, a\right)+a_{2} d\left(x_{2 n+2}, x_{2 n+1}, x_{2 n+1}, a\right)+a_{3} d\left(x_{2 n+1}, x_{2 n}, a\right) \\
& +\mathrm{a}_{4} \mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}+1}, \mathrm{x}_{2 \mathrm{n}+1}, \mathrm{a}\right)+\mathrm{a}_{5} \mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}+2}, \mathrm{x}_{2 \mathrm{n}}, \mathrm{a}\right) \\
& \leq\left(\mathrm{a}_{1}+\mathrm{a}_{3}\right) \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}+1}, \mathrm{x}_{2 \mathrm{n}}, \mathrm{a}\right)+\mathrm{a}_{2} \mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}+2}, \mathrm{x}_{2 \mathrm{n}+1}, \mathrm{a}\right) \\
& +\mathrm{a}_{5}\left(\mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}+2}, \mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}+1}\right)+\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}+2}, \mathrm{x}_{2 \mathrm{n}+1}, \mathrm{a}\right)+\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}+1}, \mathrm{x}_{2 \mathrm{n}}, \mathrm{a}\right)\right] \text {. } \\
& =\quad\left(a_{1}+a_{2} \mathrm{ea}_{5}\right) d\left(x_{2 n+1}, x_{2 n}, a\right)+\left(a_{2}+a_{5}\right) d\left(x_{2 n+2}, x_{2 n+1}, a\right) \\
& \text { or } \quad d\left(x_{2 n+1}, x_{2 n+2}, a\right) d\left(x_{2 n+1}, x_{2 n}, a\right) \\
& \text { or } \quad d\left(x_{2 n+1}, x_{2 n+2}, a\right) \leq \beta d\left(x_{2 n+1}, x_{2 n}, \text { a }\right) \text {, where } \\
& \leq \beta \cdot \gamma \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}}, \mathrm{a}\right) \\
& \leq \mathrm{d}(\beta \gamma)^{\mathrm{n}} \mathrm{~d}\left(\mathrm{xo}, \mathrm{x}_{1}, \mathrm{a}\right) \text {. }
\end{aligned}
$$

Let $\mathrm{c}=\beta \gamma$, then $\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}+1}, \mathrm{x}_{2 \mathrm{n}+2} \mathrm{a}^{\text {a) }} \mathrm{c}^{\mathrm{n}} \mathrm{d}\left(\mathrm{x}_{\mathrm{o}}, \mathrm{x}, \mathrm{a}\right)\right.$, where $0 \leq \mathrm{c}<1$.
Hence $\left\{x_{n}\right\}$ is a cauchy sequence. Since (X, d) is a complete 2-metric space, $\left\{x_{n}\right\}$ converges say to z. Hence the sequence $A x_{2 n}=T x_{2 n+1}$ and $B x_{2 n+1}=x_{2 n+2}$ which are subsequence also converge to point z .
Since $B(X) \leq S(X)$, there exists a point $u \in X$ st. $z=S u$.
$\operatorname{Now} d(A u, z, a)=d\left(A u, B x_{2 n+1}, a\right)$

$$
\leq a_{1} d\left(S u, T x_{2 n+1}, a\right)+a_{2} d(A u, S u, a)+a_{3} d\left(B x_{2 n+1}, T x_{2 n+1}, a\right)+a_{4} d
$$

$\left(\mathrm{Su}, \mathrm{Bx}_{2 \mathrm{n}+1}, \mathrm{a}\right)+\mathrm{a}_{5} \mathrm{~d}\left(\mathrm{Au}, \mathrm{Tx}_{2 \mathrm{n}+1}, \mathrm{a}\right)$
when $\mathrm{n} \rightarrow, \mathrm{Tx}_{2 \mathrm{n}+1} \rightarrow \mathrm{z}, \mathrm{Bx}_{2 \mathrm{n}+1} \rightarrow \mathrm{z}$ and putting $\mathrm{Su}=\mathrm{z}$.
$\mathrm{d}(\mathrm{Au}, \mathrm{z}, \mathrm{a}) \leq\left(\mathrm{a}_{2}+\mathrm{a}_{5}\right) \mathrm{d}(\mathrm{Au}, \mathrm{z}, \mathrm{a})$, which is a contradiction.
Hence, $d(A u, z, a)=0$ which gives $A u=z$.
Thus, $\mathrm{Su}=\mathrm{Au}=\mathrm{z}$.
So, u is the coincidence point of A and S. Since the pair of maps A and S are commutative, $\mathrm{ASu}-=\mathrm{SAu}$ i.e. $\mathrm{Az}=\mathrm{Sz}$.
Again since $\mathrm{A}(\mathrm{x}) \leq \mathrm{T}(\mathrm{x})$, there exists a point $\mathrm{v} \in \mathrm{X}$ s.t. $\mathrm{z}=\mathrm{Tv}$.
Now, $d(z, \beta v, a)=d\left(A x_{2 n}, B v, a\right)$

$$
\begin{aligned}
& \leq_{1} d\left(S x_{2 n}, T v, a\right)+a_{2} d\left(A x_{2 n}, S x_{2 n}, a\right)+a_{3} d(B v, T v, a) \\
& a_{4} d^{d}\left(S x_{2 n}, B v, a\right)+a_{5} d\left(A x_{2 n}, T v, a\right)
\end{aligned}
$$

When $\mathrm{n} \rightarrow$ and putting $\mathrm{Tv}=\mathrm{z}$., we have
$d(z, B v, a) \leq\left(a_{3}+a_{4}\right) d(B v, z, a)$, which is a contradiction.
Thus, $\mathrm{d}(\mathrm{z}, \mathrm{Bv}, \mathrm{a})=0$ which implies $\mathrm{z}=\mathrm{Bv}$.
i.e. $z=T v,=B v$, showing that v is a coincidence point of T and B. As the pair of maps B and T are commutative
so that $\mathrm{TBv}=\mathrm{BTv}$ i.e. $\mathrm{Tz}=\mathrm{Bz}$.
Now we shall show that z is a fixed point of A.
$\mathrm{d}(\mathrm{z}, \mathrm{Az}, \mathrm{a})=\mathrm{d}(\mathrm{Az}, \mathrm{Bv}, \mathrm{a})$

$$
\leq a_{1} d(S z, T v, a)+a_{2} d(A z, S z, a)+a_{3} d(B v, T v, a)+a_{4} d(S z, B V, a)+a_{5} d(A z
$$

Tv, a)

$$
=\mathrm{a}_{1} \mathrm{~d}(A z, z, a)+\mathrm{a}_{2} \mathrm{~d}(A z, A z, a)+\mathrm{a}_{3} \mathrm{~d}(\mathrm{z}, \mathrm{z}, \mathrm{a})+\mathrm{a}_{4} \mathrm{~d}(A z, z, a)+\mathrm{a}_{5} \mathrm{~d}(A z, z, a)
$$

$\therefore \quad d(z, A z, a) \leq\left(a_{1}+a_{4}+a_{5}\right) d(A z, A z, a)$ which is not possible.
Therefore, $d(z, A z, a)=0$ which given $A z=z$. i.e. $A z=S z=z$.
Now we shall show that z is a fixed point of B.
$\mathrm{d}(\mathrm{z}, \mathrm{Bz}, \mathrm{a})=\mathrm{d}(\mathrm{Az}, \mathrm{Bz}, \mathrm{a})$

$$
\begin{aligned}
& \leq \mathrm{a}_{1} \mathrm{~d}(\mathrm{Sz}, \mathrm{Tz}, \mathrm{a})+\mathrm{a}_{2} \mathrm{~d}(\mathrm{Az}, \mathrm{Sz}, \mathrm{a})+\mathrm{a}_{3} \mathrm{~d}(\mathrm{Bz}, \mathrm{Tz}, \mathrm{a})+\mathrm{a}_{4} \mathrm{~d}(\mathrm{Sz}, \mathrm{Bz}, \mathrm{a})+\mathrm{a}_{5} \mathrm{~d}(\mathrm{Az}, \mathrm{Tz}, \mathrm{a}) \\
& =\mathrm{a}_{1} \mathrm{~d}(\mathrm{z}, \mathrm{Bz}, \mathrm{a})+\mathrm{a}_{2} \mathrm{~d}(\mathrm{z}, \mathrm{z}, \mathrm{a})+\mathrm{a}_{3} \mathrm{~d}(\mathrm{Bz}, \mathrm{Bz}, \mathrm{a})+\mathrm{a}_{4} \mathrm{~d}(\mathrm{z}, \mathrm{Bz}, \mathrm{a})+\mathrm{a}_{5} \mathrm{~d}(\mathrm{z}, \mathrm{Bz}, a)
\end{aligned}
$$

or $\mathrm{d}(\mathrm{z}, \mathrm{Bz}, \mathrm{a}) \leq\left(\mathrm{a}_{1}+\mathrm{a}_{4}+\mathrm{a}_{5}\right) \mathrm{d}(\mathrm{z}, \mathrm{Bz}, a)$ which is a contradiction.
Thus, $\mathrm{d}(\mathrm{z}, \mathrm{Bz}, \mathrm{a})=0$ which gives $\mathrm{z}=\mathrm{Bz}$. i.e. $\mathrm{z}=\mathrm{Bz}=\mathrm{Tz}$.
Hence, $\mathrm{Az}=\mathrm{Sz}=\mathrm{Bz}=\mathrm{Tz}=\mathrm{z}$, showing that z is the common fixed point of $\mathrm{A}, \mathrm{B}, \mathrm{S}$, and T.

Now we shall show that the uniqueness of this fixed point.
Suppose that w is the other common fixed point of A, B, S and T.
Then we have $\mathrm{Aw}=\mathrm{Sw}=\mathrm{BW}=\mathrm{Tw}=\mathrm{w}$.
Now,

$$
\begin{aligned}
d(z, w, a) & =d(A z, B w, a) \\
& =a_{1} d(S z, T w, a)+a_{2} d(A z, S z, a)+a_{3} d(B w, T w, a) \\
& +a_{4} d(S z, B w, a)+a_{5} d(A z, T w, a) \\
& =a_{1} d(z, w, a)+a_{2} d(z, z, a)+a_{3} d(w, w, w)+a_{4} d(z, w, a)+a_{5} d(z, w, a)
\end{aligned}
$$

i.e. $d(z, w, a) \leq\left(a_{1}+a_{4}+a_{5}\right) d(z, w, a)$ which is a contradiction
hence $d(z, w, a)=0$ which gives $z=w$.
i.e. our supposition is wrong and therefore z is the unique common fixed point of A, B, Sand T.//

Remark (3.2): By putting $\mathrm{A}=\mathrm{T}$ and $\mathrm{S}=\mathrm{B}$ we get the theorem 1.1. Thus our result generalizes the result of Lal and Singh[3].

BIBLIOGRAPHY:

Gahler, S. 1963. "2-metrische Raume and ihre Topologische structure." Math Natch. 26: 115 -148. [1]

Iseki, K. 1975. "Fixed points theorems in 2-metric Space." Math.Seminar Notes 3: 133-136. [2]

Lal, S.N., and A.K. Singh. 1978. "An anologue of Banach's Contraction principle for 2-metric space." Bull. Austral.Math.Soc. 18: 137 - 143. [3]

Mantu Saha, Debashish Dey, and Anamika Ganguly. 2011. "A generalization of fixed point theorems in 2- metric space." General Mathematic 17(1): 87-98.

Rhoads, B. E. 1979. "Contraction type mappings on a 2-metric space." Math.Nachr. 91: 15-154. [5]

Singh, M.R., and L.S. Singh. 2010. "Some fixed point theorems in 2-metric space." International transaction in Mathematical Sciences and Computer 3(1) H: 121129. [4]

